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The electronic band structures of PbS, PbSe, and PbTe in the rocksalt structure are calculated with the
quasiparticle self-consistent GW �QSGW� approach with spin-orbit coupling included. The semiconducting
gaps and their deformation potentials as well as the effective masses are obtained. The GW approximation
provides a correct description of the electronic structure around the gap, in contrast to the local-density
approximation, which leads to inverted gaps in the lead chalcogenides. The QSGW calculations are in good
quantitative agreement with experimental values of the gaps and masses. At moderate hole doping a complex
filamental Fermi-surface structure develops with ensuing large density of states. The pressure-induced gap
closure leads to linear �Dirac-type� band dispersions around the L point.
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I. INTRODUCTION

The lead chalcogenides PbX �with X�S. Se, or Te� are of
great importance for infrared detection and lasing devices,1–3

and furthermore find applications as thermoelectric
materials,4–6 as window coatings7 and in solar-energy
panels.8 With Tl doping PbTe may even exhibit
superconductivity.9,10 The lead chalcogenides crystallize in
the rocksalt structure at normal pressure. Their electronic
structures11,12 are characterized by small direct semiconduct-
ing gaps, which occur at the L point of the Brillouin zone
�BZ�. The gaps measured at low temperature are 0.286 eV,
0.165 eV, and 0.19 eV for PbS, PbSe, and PbTe,
respectively.13 In contrast to most other semiconductors, the
gaps of the lead chalcogenides increase with temperature and
decrease under pressure.14–18 The pressure effect has been
explained19 as originating from the relatively deep lying Pb s
state together with level repulsion around the L point. These
authors also explained other trends in the series including
alloys and band offsets in heterostructures. The trends in op-
tical properties20 were analyzed by theory based on the local-
density approximation �LDA�, and recently the elastic prop-
erties, including phonon spectra and thermodynamic
properties21,22 were studied based on LDA calculations. The
LDA band structures �with all relativistic effects included�
reproduce well the valence bands of the PbX compounds
measured in photoemission,23,24 and also a narrow semicon-
ducting gap is found,20,22 in spite of the failure of the LDA
when calculating the gap of most other semiconductors.
Closer inspection reveals that the LDA, in fact, leads to the
valence-band maximum �VBM� and conduction-band mini-
mum �CBM� states being interchanged.19,25 These states
have the same L6 symmetry but different parity and orbital
character and repel each other to form the gap. However, the
LDA gap increases under pressure, and one needs to include
a rigid band shift on top of the LDA band structure to repro-
duce the negative pressure coefficients of the gap.19,26 Im-

proved band structure approaches such as screened exchange
or GW find the correct band-gap structure.25 The PbX com-
pounds exhibit structural transitions under pressure. At high
pressures the CsCl structure is found, but in all three com-
pounds one or several intermediate phases of semiconducting
character are found. The structural details of these interme-
diate phases are still debated �see Ref. 18 for a review�.
Orthorhombic phases have recently been proposed, of Cmcm
symmetry for PbS �Ref. 27� and of Pnma symmetry for PbTe
�Ref. 28�. An interesting issue in this context is whether the
structural transition is induced by the gap closure or a �semi-
�metallic state exists in the rocksalt phase prior to the occur-
rence of the structural transition. There are experimental in-
dications that the latter may be the case in PbSe and PbTe,
while the situation is less clear for PbS.18

In the present work the electronic structures of PbX com-
pounds are investigated using the quasiparticle self-
consistent GW approximation �QSGW�.29 This approach
leads to a correct ordering of the band-gap states as opposed
to the LDA, and also to the negative pressure coefficients.
We further find that for PbSe and PbTe the gap closes at
pressures below the structural transition pressures. At the
point of gap closure the band dispersions become linear
�Dirac-type� in the vicinity of the L point. Increasing the
pressure beyond this point leads to reopening of the gap, now
with the opposite order of the L6 states. At moderate p dop-
ing it is predicted that the PbX compounds develop a fila-
mental Fermi surface with strong tendency toward nesting
�at Q vectors ��100�2� /a�, which reflects the dominating
pp� bonding interaction.

This paper is organized as follows. In Sec. II the QSGW
methodology is briefly outlined and calculational details pre-
sented. In Sec. III the QSGW band structure results for PbS,
PbSe, and PbTe are presented and discussed. Finally, Sec. IV
gives the conclusions drawn from the present work.
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II. METHODOLOGY

The GW approximation30 is formally the first term in an
expansion of the nonlocal and energy-dependent self-energy
��r ,r� ,�� in the screened Coulomb interaction W. A more
physically appealing picture views the GW as a dynamically
screened Hartree-Fock approximation plus a Coulomb hole
contribution.30 The quasiparticle energies �� and wave func-
tions 	��r� are solutions to the equation

Ĥ0	��r� +� ����,r,r��	��r��d3r� = ��	��r� , �1�

where Ĥ0 is the Hamiltonian of a noninteracting reference
system, and the self-energy operator � in GW is expressed as

���,r,r�� =
i

2�
� G0�� + ��,r,r��W���,r,r��d��. �2�

In this equation G0 is the Green’s function of the uncorre-
lated reference system while W denotes the screened Cou-
lomb interaction. Very often G0 is constructed from an LDA
or LDA+U band structure, in which case the reference sys-
tem strictly speaking is not uncorrelated, but the potential
due to correlation is the exchange-correlation potential, Vxc,
which is explicitly known and can be subtracted: �→�
−Vxc
�r−r��. The bare interaction between two electrons in
positions r and r� is

v�r − r�� =
e2

�r − r��
, �3�

where e denotes the electron charge. This interaction poten-
tial is screened by the presence of the other electrons in the
solid, which is expressed through the dielectric function
��� ,r ,r��, so that the effective interaction is

W��,r,r�� =� �−1��,r,r��v�r� − r��d3r�. �4�

The dielectric function is calculated in the random-phase ap-
proximation as �=1−vP, where the polarization function P
is given as P=−iG0�G0.

The above equations thus outline a mapping Ĥ0→�.
However, from the self-energy operator an “optimum” non-
local one-electron “exchange-correlation” potential may be

constructed,29,31 defining a mapping �→ Ĥ0. The combined
mapping may therefore be iterated to self-consistency, and at

self-consistency the reference system, described by Ĥ0, has a
band structure as close as possible29,31 to the true quasiparti-
cle band structure in Eq. �1�.

The GW approach neglects several contributions to the
full self-energy operator, which can be collected as vertex
corrections in the GW formalism.30 Leading vertex correc-
tions have been studied in a few cases,32–34 but the comput-
ing effort is large. A simpler empirical approach35 of reduc-
ing the QSGW self-energy by a factor 0.8 �hybrid QSGW
�hQSGW� approximation� has been found to lead to good
quantitative agreement with experimental gaps in a wide
class of semiconductors.

The electronic structure calculations were performed with
the linear muffin-tin orbital �LMTO� method36 in the full-
potential version of Ref. 37. Inside muffin-tin spheres, the
orbitals are represented by angular sums of numerical radial
functions. The orbitals are matched onto smoothed Hankel
functions in the interstitial region. Two sets of orbitals, with
spdfg and spd characters, respectively, with different decay
rates in the interstitial region, were used on each atomic site.
The tails of the orbitals were expanded inside other muffin-
tin spheres with a cutoff of �max=6. Careful checks were
made of convergence in the wave-function basis, the product
basis, and other parameters. For the wave-function basis,
1-shot LDA-based GLDAWLDA calculations were carried out,
adding augmented plane waves �APWs� to the generalized
LMTO basis.38 APWs improve the basis in the interstitial
regions. The additional APWs affect the band structure very
slightly �e.g., gap at L changes by �0.01 eV�.

The basis set included the Pb 5d semicore states, treated
as local orbitals,39 since the bands around the fundamental
gap are affected by both Pb 5d and 6d degrees of freedom.
For further variational freedom, additional orbitals of spd
character were centered on interstitial sites, and high-energy
Pb and chalcogen �n+1�s and �n+1�p orbitals were included
�n meaning the main valence shell�, as shallow local orbitals.
Local orbitals affect the basis in the augmentation region.
These states play a non-negligible role in obtaining an accu-
rate band structure for the unoccupied states, which were
included in the calculation of the polarization function up to
a cutoff of 40 eV above the CBM.

All scalar-relativistic effects are included in the GW cal-
culations, while spin-orbit coupling is not included during
the QSGW self-consistency iterations but is added as an extra
term in the Hamiltonian for the final computation of the qua-
siparticle band structure. The spin-orbit coupling is signifi-
cant, and the extra degrees of freedom in the Pb and anion p
partial waves provided by the local orbitals are needed to
reliably capture this within the L ·S approximation.40 Tests
within the atomic-spheres approximation36 revealed that the
fundamental gap and other aspects of the band structure of
the lead chalcogenides are negligibly affected by whether
one uses a fully Dirac-relativistic formulation41,42 or the ap-
proximative L ·S description of spin-orbit interaction. The
self-energy is computed by integration over a 8�8�8 k
mesh in the BZ.

III. RESULTS AND DISCUSSION

A. Band structures

The self-consistent quasiparticle band structures of PbS,
PbSe, and PbTe calculated at the measured low-temperature
lattice constants43 are presented in Figs. 1–3. The PbSe band
structure in Fig. 1 shows the Se s band at low energy, around
−12 eV relative to the valence-band maximum, and the Pb s
band a little higher, around −8 eV. The states around the gap
are dominated by Pb and Se p bands, which are highly hy-
bridized, however, predominantly with Se states below and
Pb states above the Fermi level. The average direct band gap
is 2–3 eV, caused by avoided crossings, which are clearly
seen along 
-X and 
-K lines. The minimum gap is formed
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at the L point, where the Se p state is pushed up in energy
due to antibonding interaction with the Pb s state while the
Pb p state is pushed downward due to hybridization with
Se d states.19 Both states have L6 symmetry but different
parity. Putting the Pb atom at the origin, the VBM state is an
even L6

+ state while the CBM state is an odd L6
− state. Com-

pared to LDA �dashed lines in Fig. 1�, the QSGW band struc-
ture of PbSe displays only minor changes: the average direct
band gap is increased by �0.5 eV, the band width of the
Se p valence band is increased by �1 eV, and Pb and Se s
bands are slightly downshifted in the QSGW approximation.
These are normal effects of the GW approach, and similar
effects are observed for PbS and PbTe �the s bands are not
shown in Figs. 2 and 3�. Within the LDA the minimum band
gap also occurs at the L point with similar value �Eg
=0.26 eV in LDA and Eg=0.21 eV in QSGW for PbSe�, but
behind this lies the fact that the order of valence and con-
duction states at the L point has been reversed. Away from
the L point the corresponding bands repel each other leading
in both cases to the opening of a gap, however, in terms of
the E�L6

−�−E�L6
+� energy difference, the QSGW inflicts a cor-

rection of 0.47 eV �from −0.26 to +0.21 eV�.
The present results for the energy gaps and spin-orbit

splittings of the PbX compounds are summarized and com-
pared to experiment in Tables I and II. The QSGW gaps are
0.31 eV, 0.21 eV, and 0.29 eV for PbS, PbSe, and PbTe,
which compares favorably with the experimental low-
temperature values of PbS and PbSe, 0.286 eV and 0.165 eV,

respectively, while the experimental value for PbTe is 0.19
eV, i.e., in this case the QSGW overestimates the gap slightly
more. Overshooting the experimental gap of semiconductors
is the expected result for QSGW,31 but the systematics might
be different in the IV-VI semiconductors. The LDA gaps
agree with previous calculations.20,22,25 However, for all
three compounds the LDA gap is inverted, i.e., with the in-
correct E�L6

−��E�L6
+� ordering. Thus, counting the LDA

gaps as negative, the correction provided by the QSGW ap-
proximation amounts to 0.48 eV, 0.47 eV, and 0.40 eV for
PbS, PbSe, and PbTe, respectively, i.e., it has similar magni-
tudes in the three cases. Table I also lists the gaps as calcu-
lated with the hybrid QSGW approach, which improves the
agreement with experiment in many conventional
semiconductors,35 but in the present cases the hybrid ap-
proach merely reduces the band gaps by 0.07–0.09 eV with
no systematic improvement.

The electron-phonon interaction may influence the value
of the energy gap even at zero temperature �due to zero-point

TABLE I. Semiconducting gap of the lead chalcogenides, in eV,
as calculated with the QSGW approximation, the hybrid �hQSGW�
approximation and with LDA. Note that the LDA gaps of PbS and
PbSe are formed with the wrong order of states at the L point �L6

−

�L6
+�, as discussed in the text. Hence they are quoted as negative in

this table. The experimental data are low temperature and RT data
from Ref. 13. The positive sign of the gap, i.e., L6

+�L6
−, is experi-

mentally verified through the gap pressure derivative �Ref. 60� and
the 207Pb Knight shift �Ref. 11�.

PbS PbSe PbTe

QSGW, this work 0.31 0.21 0.29

hQSGW, this work 0.22 0.14 0.22

LDA, this work −0.17 −0.26 −0.11

GWa 0.35 0.15 0.24

HSE03a 0.26 0.13 0.20

Expt.�4.2 K� 0.286 0.165 0.19

Expt. �RT� 0.37–0.40 0.26–0.29 0.29–0.32

aThe calculations are compared to the GW and hybrid-functional
calculations of Ref. 25 �HSE03�.
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FIG. 2. �Color online� Comparison of QSGW �full blue line� and
LDA band structures �dashed red line� of PbS. The zero of energy is
placed at the valence-band maximum.
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FIG. 3. �Color online� Comparison of QSGW �full blue line� and
LDA band structures �dashed red line� of PbTe. The zero of energy
is placed at the valence-band maximum. The Pb and Te s bands are
not shown.
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FIG. 1. �Color online� Comparison of QSGW �full blue line� and
LDA band structures �dashed red line� of PbSe. The zero of energy
is placed at the valence-band maximum.
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motion�.44 This effect was investigated in PbS,45 in which
case a near zero renormalization effect was found due to
cancellation of contributions from Pb and S vibrations �con-
tributing −30 and +30 meV to the gap correction, respec-
tively�. We do not have access to the required information
�electron-phonon interaction strength, isotope effects� to per-
form a similar analysis for PbSe and PbTe. It seems reason-
able, as an estimate, to assume that the major difference will
be a rescaling of the chalcogen contribution by the mass
factor, M−1/2, which would lead to zero-point motion induced
gap corrections of −11 meV and −15 meV for PbSe and
PbTe, respectively, i.e., hardly of significance in the present
context.

The spin-orbit splittings quoted in Table II show good
agreement between theory and experiment, except for the
splitting at the X point in PbTe, which is 0.64 eV according
to the QSGW theory but measured to be �1 eV. It is a
consistent trend of the calculations that the spin-orbit split-
ting is slightly reduced �by about 10%� in QSGW compared
to LDA, however, both can be said to be in good agreement
with the observed numbers.

The photoemission experiments of PbSe and PbTe have
been carefully compared to fully relativistic LDA calcula-
tions in Ref. 23 with excellent agreement for the band dis-
persion along the 
-X direction. While the general topology
of the bands is the same in QSGW as in LDA, the somewhat
wider bands obtained in QSGW lead to slightly worsened
agreement with experiment. It would be valuable to perform
more extensive photoemission studies of the band structures
of the lead chalcogenides in order to learn more about the
accuracy of the QSGW bands.

It is a special feature of the electronic structure of PbX
compounds that several secondary maxima of the valence
bands occur in the interior of the BZ. Thus, in Figs. 1–3, a
secondary valence-band maximum occurs along the � line
between the 
 and K points while other maxima occur at W
and along 
-X. These maxima reflect a quasicubic filament
of high-lying valence states, which originate from the domi-
nating pp�-type hybridization of Pb and Te in the highest
valence band and lowest conduction band and the avoided
crossings of the ensuing bands. This is illustrated in Fig. 4,
which shows a surface of constant electron energy E
=EVBM−0.30 eV through the BZ for PbTe. The surface re-
veals an almost cubic filamental structure with cube corners
at the L points. In a rigid band model this energy surface

would correspond to the Fermi surface of a hole-doped PbTe
sample with about 4% holes/f.u. �as could be realized in a
TlxPb1−xTe alloy with x=0.04�. This is somewhat above the
region of Tl doping for which superconductivity9,10 �see,
however, Ref. 46� as well as enhanced thermoelectric effect47

have been reported for TlxPb1−xTe samples. It is nevertheless
suggestive that these effects originate from the appearance of
such a filamental Fermi surface in p-doped alloys with ac-
companying large Fermi surface area and large density of
states. On the other hand models of superconductivity48 in
Tl-doped PbTe presume a negative-U effect on the Tl p
states, which does not reconcile with the rigid band model.
Figure 5 shows a blowup of the density of states of PbTe
around the valence-band maximum. The density of states
exhibits a kink at the energy of the secondary valence-band
maximum along the � line �for PbTe, E��max�=−0.21 eV�.
This kink corresponds to the doping level x=0.006. In the
theory for the Seebeck effect in metals,49 the Seebeck coef-
ficient is directly proportional to the slope of the density of
states. Hence, it is suggestive that the good thermoelectric
performance of PbTe-based materials is at least partly related
to the occurrence of these filaments of high-lying hole states.
Similar pictures are found for PbS and PbSe, except that in
these cases the secondary-band maxima along the � line lie

TABLE II. Spin-orbit splitting at 
 and X points for the lead chalcogenides, in eV, as calculated with the
QSGW approximation and with LDA.

PbS PbSe PbTe


 X 
 X 
 X

QSGW 0.33 0.28 0.58 0.43 0.99 0.64

LDA 0.36 0.32 0.66 0.48 1.11 0.70

Expt.a 0.3 0.2 0.6 0.5 1.15 0.9

Expt.b 0.75 0.55 1.10 1.10

aThe experimental data are from Ref. 61.
bThe experimental data are from Ref. 23.

FIG. 4. �Color online� Hole surface in reciprocal space for PbTe
in the QSGW approximation at V=V0 �Ref. 43�. The plot shows the
constant energy surface for energy E=EVBM−0.30 eV. The surface
is displayed in the double BZ with the fcc BZ sketched by dashed
lines. k vectors along the axes are in units of 2� /a, where a is the
lattice constant. The color merely serves visualization purposes.
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deeper �E��max�=−0.66 and −0.52 eV for PbS and PbSe�,
and, in fact, only constitute saddle points in the energy land-
scape, as will be discussed further in Sec. III B. In Fig. 6 a
similar constant energy plot for PbSe is shown for an energy
just below E��max� �doping level x=0.05�.

B. Effective masses

The calculated effective masses of the PbX compounds
around the L point of the highest valence band and lowest
conduction band are listed in Table III. The agreement be-
tween the QSGW values and experimental data is quite good,
in particular taking into account the difficulty of measuring
the masses. The calculated values are rather sensitive to the
gap, and the band dispersion, in general, is quadratic only in
a rather small region around the L point. In their study using
the screened exchange interaction, Hummer et al. �Ref. 25�
found quite accurate gap values and also the masses are in
close agreement with experiment. We have included their
results for comparison in Tables I and III. One notices a
relatively large value of the longitudinal mass in PbTe �i.e.,
for k vector along the 
-L direction�, which is 9–12 times
larger than the transverse mass according to the calculation,
10–14 times larger according to experiment �Ref. 50 even
quotes a ratio of 18�4 for holes�. For PbS and PbSe the
similar factor is �1.4 and around 2 as given by experiment,
and 1.1 and 1.6 as obtained from the theory. The longitudinal
mass is always the larger, except for electrons in PbS, where
the transverse mass is calculated to be slightly larger than the
longitudinal electron mass while experiment has the longitu-
dinal mass 30% larger. The large ratio of longitudinal to
transverse mass in PbTe reflects the very elongated electron
and hole pockets around the L point, as illustrated in Fig. 7
for holes.

To investigate the importance of the gap size for the de-
rived masses, Table III also lists masses obtained by adjust-
ing the calculated gaps to the experimental low-temperature
values. The adjustment procedure simply mixes the QSGW

self-energy and the LDA exchange-correlation potentials,
�adj =x�QSGW+ �1−x�Vxc, i.e., instead of considering a fixed
mixing fraction x=0.8 as in the hybrid approximation dis-
cussed in Sec. II, we use the parameter x to tune to the
experimental gap. Values of x=0.94, 0.87, and 0.68 provide
the desired gaps for PbS, PbSe, and PbTe, respectively. One
notices a closer accordance with the experimental transverse
masses upon gap adjustment for PbTe and PbSe while the
PbSe longitudinal masses are significantly improved and the
PbTe longitudinal masses slightly worsened. For PbS, the
adjustment has relatively small effect, but in the direction of
worsening the agreement with the experimental masses.

The characteristics of the secondary maximum at the �
point in PbTe has been the subject of several experimental
studies in the past. Due to its proximity in energy �even
moving closer to the valence-band maximum with tempera-
ture� holes are generated in these maxima and their proper-
ties may be investigated.50–53 Table IV lists calculated ener-
gies and masses for this point for all three compounds.
However, for PbS and PbSe this is not a local maximum in
the three-dimensional energy landscape but only a saddle
point �hence leading to a large negative mass for one of the
principal directions�. Since this point is also deeper in energy
for PbS and PbSe compared to PbTe it will not be relevant
for thermally activated hole carriers, although it might be
probed by photoemission spectroscopy.

The effective masses at the � point in PbTe for the three
principal directions are distinctly different, with one trans-
verse mass being 22 times larger than the longitudinal mass
�longitudinal here meaning for motion along the direction of
k��, and the second transverse mass being an additional fac-
tor of 3 smaller. Consequently, the hole pockets around the �
maximum become very elongated, with a shape like a pea
pod, as illustrated in Fig. 8. The direction of the pocket is
along the cubic directions of the filamentary structure illus-
trated in Fig. 4. This picture has also been confirmed by
experiment.50 The corresponding large negative masses for

FIG. 6. �Color online� Hole surface in reciprocal space for PbSe
in the QSGW approximation at V=V0 �Ref. 43�. The plot shows the
constant energy surface for energy E=EVBM−0.54 eV. The surface
is shown in the double BZ with the fcc BZ sketched by dashed
lines. k vectors along the axes are in units of 2� /a, where a is the
lattice constant. The color merely serves visualization purposes.
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this direction calculated for PbS and PbSe of course imply
that the energy dispersion is also very flat in this direction for
these two compounds, albeit curving upward, which then
also explains the peculiar hole surface illustrated in Fig. 6.
There is experimental information available for the second-
ary maximum of PbTe, which is quoted in Table IV. From
the temperature dependence of hole-carrier density the geo-
metric mean mc= �m�zm�m�xy�1/3 may be estimated, although
the analysis is sensitive to the modeling of the temperature
dependence of the energy of the � maximum. The present
calculated value of mc=0.32 is in good agreement with the
available experimental data. The large anisotropy is con-
firmed by experiments, which have estimated a value of
10�4 for the ratio of the largest mass to the average of the
two smaller masses.50 The corresponding value calculated in
the present work is 36, which can be considered a satisfac-
tory agreement given the uncertainty of the experimental
analysis.

C. Pressure effects

The energy gaps of the PbX compounds decrease under
pressure. Table V lists the calculated deformation potentials

� =
dEg

d ln V
,

which are all positive, in agreement with experiment but in
contrast to the values calculated within LDA. As discussed,
the sign error of the LDA values for � is due to the inverted
gap structure. The calculated QSGW values of the deforma-
tion potentials compare favorably with experimental values.
Several issues hinder the comparison, however. First, the
present calculations refer to a static lattice, while experi-
ments usually are done at room temperature and are thus
affected by thermal expansion and electron-phonon
interaction.44,45 Second, the deformation potential is the natu-
ral quantity to calculate while the natural quantity to measure

is the pressure coefficient of the band gap,
dEg

dp . The conver-
sion factor is the bulk modulus but there is a considerable
spread in experimental values �see Ref. 19�. The calculated
LDA values of the bulk moduli are B=65.3 GPa, 59.6 GPa,
and 48.9 GPa, for PbS, PbSe, and PbTe, respectively, which
fall within the ranges of experimental values, and they are
also similar to those found in previous theoretical works.19,22

Thermal expansion is equivalent to a negative pressure, so
combining the calculated deformation potentials with experi-
mental expansion coefficients of PbX compounds, which are
all close to 2.0�10−5 K−1 at 300 K �linear expansion, from
Ref. 16�, we arrive at the thermal-expansion coefficients for
the energy gap of lead chalcogenides �due to lattice expan-

TABLE III. Effective masses �in units of the free-electron mass� of holes �h� and electrons �e� in PbS,
PbSe, and PbTe, at the L point. Values as calculated in the present work with QSGW and with the adjusted
QSGW �aQSGW, see text for details� are compared to the masses as calculated with the hybrid-functional
approach of Ref. 25 �HSE03�, as well as to experimental values from Ref. 11. The last two lines give the
calculated volume derivatives of the masses, ��m�=dm /d ln V�V=V0�, also in units of the free-electron mass.

PbS PbSe PbTe

h�L� e�L� h�L� e�L� h�L� e�L�

QSGW m� 0.092 0.085 0.080 0.074 0.338 0.247

m� 0.073 0.087 0.045 0.049 0.029 0.028

aQSGW m� 0.087 0.081 0.066 0.063 0.271 0.209

m� 0.071 0.083 0.040 0.042 0.022 0.021

HSE03 m� 0.103 0.096 0.075 0.070 0.296 0.223

m� 0.071 0.081 0.040 0.041 0.029 0.027

Expt. m� 0.105�15� 0.105�15� 0.068�15� 0.070�15� 0.31�5� 0.24�5�
m� 0.075�10� 0.080�10� 0.034�7� 0.040�8� 0.022�3� 0.024�3�

QSGW ��m�� 1.5 1.3 1.8 1.5 3.2 1.3

��m�� 0.6 0.7 0.7 0.7 0.3 0.3

FIG. 7. �Color online� Hole pocket in PbTe in the vicinity of the
L point �at coordinates �0.5,0.5,0.5�, units of reciprocal vectors are
2� /a, where a is the lattice constant�. The hexagonal BZ facet is
indicated. The elongated shape of the hole pocket reflects the large
difference in transverse and longitudinal masses. The surface corre-
sponds to the energy E=EVBM−0.10 eV �doping level x=0.001�.
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sion alone� of dEg /dT=0.32 meV /K, 0.29 meV/K, and 0.22
meV/K, for PbS, PbSe, and PbTe, respectively. These can be
compared to measured temperature coefficients of the gap of
dEg /dT=0.45 meV /K for PbS,45 0.51 meV/K for PbSe,12

and 0.45 meV/K for PbTe.12 It appears that the experimental
thermal coefficients of the gap are significantly larger than
can be explained solely by thermal expansion, i.e., the
electron-phonon interaction also has a significant influence.12

Table V also lists the calculated deformation potential for
the secondary valence-band maximum at the � point, which
is positive and of smaller magnitude than the deformation
potential of the fundamental gap. With the sign convention
E�k���0, the positive deformation potential implies that the
� maximum moves away from the valence-band maximum
with compression. Comparing the deformation potentials of
the fundamental gap and the � maximum one notes that the
former is a factor 3–4 times larger than the latter. No experi-
mental value of this quantity is available, however, it is well
established that for PbTe the secondary minimum moves
closer to the VBM as temperature is raised, which is in ac-
cord with the calculated sign of the deformation potential. In
their analysis of several transport properties, Harris and Rid-
ley �Ref. 54� used a value of dE�k�� /dT=0.4 meV /K, im-
plying degeneracy of the two valence-band maxima at about
450 K. They suggest that the separation between the CBM
and the � maximum is more or less constant with tempera-
ture, while rising temperature leads to a relative downshift of
the VBM. From our calculated deformation potential and the
thermal-expansion coefficient, we arrive at a value of
dE�k�� /dT=0.05 meV /K, i.e., much lower than Harris and
Ridley’s value, implying that thermal expansion by itself
cannot explain the behavior of the � maximum with tem-
perature. Again, it appears that one needs to consider signifi-
cant phonon-renormalization effects to explain the observed
band-edge behaviors.

The calculated volume derivatives of the effective masses
are included in Table III. In this case no experimental values
have been reported. The effective masses have positive de-
formation potentials, i.e., under pressure they decrease. This
has its origin in the decrease in the gap under pressure. As
the two L6 states come closer and the bands in the vicinity of
L repel each other, the dispersion becomes steeper. At the

TABLE IV. Characteristic parameters for the local valence-band maximum along the � line in PbS, PbSe,
and PbTe. The location of the maximum is given as k�= �k� ,k� ,0� 2� /a. E�k�� is the energy of the
maximum relatively to the valence-band maximum, and m�, m�xy, and m�z the effective masses �in units of
the free-electron mass� of holes along the three principal axes �1,1,0�, �1,−1,0�, and �0,0,1�, respectively.
Finally, mc is the density-of-states mass, i.e., the geometric mean of the �absolute value of� the masses. Values
are calculated in the present work with QSGW.

PbS, QSGW PbSe, QSGW

PbTe

QSGW Expt.

k� 0.416 0.403 0.369

E�k�� �eV� −0.66 −0.52 −0.21 −0.14,a,d −0.17,b −�0.15–0.20� c

m� 0.168 0.154 0.171

m�xy 0.115 0.089 0.056

m�z −2.51 −8.00 3.54

mc 0.36 0.48 0.32 0.11–0.45,a 0.38,c 0.11,d 0.19e

m�z / �m�m�xy�1/2 −18 −68 36 10�4 b

aReference 52.
bReference 50.
cReference 53.
dReference 51.
eReference 54.

FIG. 8. �Color online� Hole pocket in PbTe in the vicinity of the
secondary valence-band maximum along the � line. The maximum
is located at coordinates k�= �0.37,0.37,0�, indicated with the
crossing of the dotted lines. Units of reciprocal vectors are 2� /a,
where a is the lattice constant. The surface corresponds to the en-
ergy E=EVBM−0.23 eV, which is 19 meV below the � maximum.
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same time the region around L, where the parabolic approxi-
mation for the band dispersion is valid, becomes smaller.
From QSGW calculations under compression we find the gap
closure to happen at the volumes V=0.94V0, V=0.96V0, and
V=0.93V0 for PbS, PbSe, and PbTe, respectively, where V0
denotes the corresponding equilibrium volume.43 Using the
experimental bulk moduli quoted in the caption of Table V,
this transforms into the gap closure pressures p=4.2 GPa,
2.4 GPa, and 3.4 GPa for PbS, PbSe, and PbTe. These pres-
sures can be compared to the pressures at which the lead
chalcogenides undergo structural transitions,55 which are p
=2.2 GPa, 4.5 GPa, and 6.0 GPa, respectively. It is thus
clear that the pressures at which the gap closure takes place
are lower than the structural transition pressures for PbSe
and PbTe but higher for PbS. Hence, in principle, the gap
closure may be studied in high-pressure experiments on
PbSe and PbTe. Indeed there is experimental evidence of a
gapless state occurring within the rocksalt phase for PbSe
and PbTe,56 where a maximum in hole mobility as a function
of pressure is observed around p=3 GPa. On the other hand
the situation is unclear for PbS.18 The observed mobility be-
havior in PbSe and PbTe is in excellent agreement with the
theoretical picture with the gap first shrinking to zero with
pressure, then reopening upon further compression �assum-
ing mobility inversely proportional to the gap�.56 In the entire

pressure range studied here �0–8 GPa�, all three lead chalco-
genide compounds remain semiconducting, except for semi-
metallic behavior at the gap closure pressures, i.e., the topol-
ogy of the bands remain as in Figs. 1–3 and no other
secondary valence or conduction edges move close to the L
edges.

According to the present QSGW calculations, as the gap
approaches zero the region around the L point where the
band dispersion is quadratic shrinks, and the bands become
more and more linear, with perfectly linear �Dirac-type� dis-
persion when the gap is zero. This is illustrated in Fig. 9 for
PbTe, which shows the dispersion in the vicinity of the L
point of the highest valence and lowest conduction bands, for
three volumes corresponding to before, at, and after band-
gap closure. While quite similar before and after the L6

−↔L6
+

inversion, exactly at gap closure the bands are linear, with
different effective velocities along and perpendicular to the

-L direction. The linear dispersion might have important
consequences such as transformation into topological
insulators,57 as, e.g., could be realized in thin films. The gap
closure is well documented in SnPbX alloys �X=Se or Te�,3
since the E�L6

−�−E�L6
+� energy difference has the opposite

sign in the analogous Sn compounds, however, no observa-
tion of linear band dispersion has been reported. We have
calculated the QSGW band structure of SnSe and SnTe in the
rocksalt structure. This is the equilibrium structure for SnTe
�above 160 K �Ref. 58��, lattice parameter a=6.313 Å. At
low temperature, a small rhombohedral distortion of the ideal
cubic structure occurs. SnSe has a slightly more distorted
structure, while the ideal rocksalt structure may be grown
epitaxially on NaCl �Ref. 59� �lattice parameter a=5.99 Å�.
From the calculated QSGW gaps for SnTe and SnSe �0.23
and 0.77 eV, both with the correct E�L6

−��E�L6
+� character�,

the critical concentrations for gap closure may be estimated
to be xc=0.56 for SnxPb1−xTe and xc=0.21 for SnxPb1−xSe.
For the selenide alloy, this is in excellent agreement with the
experimental critical concentrations at low temperature of

TABLE V. Deformation potentials �in eV� of the fundamental
gap of the lead chalcogenides in eV, as calculated with the QSGW
approximation, the hybrid �hQSGW� approximation and with LDA.
The experimental data are converted from measured pressure coef-
ficients, using the bulk moduli B=70 GPa �Ref, 27�, 60.2 GPa
�Ref. 17�, and 45.6 GPa �Ref. 17� for PbS, PbSe, and PbTe, respec-
tively. The last row gives the QSGW calculated deformation poten-
tials of the secondary valence-band maximum, a positive value im-
plying that this maximum moves closer to the valence band top
with volume expansion.

PbS PbSe PbTe

QSGW 5.3 4.9 3.6

hQSGW 5.0 4.6 3.4

LDA −3.7 −3.4 −2.3

Expt. 6.3,a 3.8–4.9b 3.6–5.2,b 5.2�5�c 3.2–4.1,b 3.4�4�c

��E�k��� 1.7 1.6 0.9

aReference 16.
bReference 18.
cReference 17.
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FIG. 9. �Color online� Energy band dispersions around the L
point for the highest valence and lowest conduction bands. Three
volumes are considered, Ref. 43, corresponding to before gap clo-
sure �V=0.96V0, Egap=0.15 eV—dashed blue curve�, at gap clo-
sure �V=0.926V0—full line black curve�, and after gap inversion
V=0.91V0, Egap=0.08 eV—dashed-dotted red curve�. The bands
are aligned to the VBM. To the left are given bands along the L-W
direction �i.e., on the hexagonal face of the BZ�, on the right are
given bands along the 
-L direction �i.e., orthogonal to the hexago-
nal face�. The reciprocal vectors are in units of the inverse Bohr
radius. The linear dispersions at gap closure, E=�v�k, yield veloci-
ties v�=8.5�105 m /s and v� =2.1�105 m /s for the valence band
and v�=8.4�105 m /s and v� =2.2�105 m /s for the conduction
band.
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xc=0.15 �Ref. 3�, while for the telluride alloy the estimate
�xc=0.56� is significantly larger than the experimental value3

of xc=0.35, which reflects the somewhat too large gap of
PbTe calculated by the QSGW approach in the present work.

IV. CONCLUSION

The band structures of PbS, PbSe, and PbTe semiconduct-
ing compounds have been investigated with the quasiparticle
self-consistent GW approximation. Good accordance with
available experimental information is found with this ap-
proach, which further facilitates a detailed investigation of
effective masses and the pressure effects on these. A quasicu-
bic filamental Fermi surface is found for moderately hole-

doped PbX systems, which reflects the p bonding of these
compounds and the avoided band crossings that lead to the
gap formation. At the pressure induced gap closure the high-
est valence and lowest conduction bands develop linear-
dispersion relations as three-dimensional analogs to the
graphene Dirac points.
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